2,584 research outputs found

    Quantum corrections to the `atomistic' MOSFET simulation

    Get PDF
    In this paper we study the influence of the quantum effects in the inversion layer on the parameter fluctuation in decanano MOSFETs. The quantum mechanical effects are incorporated in our previously published 3D 'atomistic' simulation approach using a full 3D implementation of the density gradient formalism. This results in a consistent, fully 3D, quantum mechanical picture which incorporates the vertical inversion layer quantization, lateral confinement effects associated with the current filamentation in the valleys of the potential fluctuation, and tunnelling through the sharp potential barriers associated with individual dopants

    Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 μm MOSFET's: A 3-D 'atomistic' simulation study

    Get PDF
    A three-dimensional (3-D) 'atomistic' simulation study of random dopant induced threshold voltage lowering and fluctuations in sub-0.1 μm MOSFETs is presented. For the first time a systematic analysis of random dopant effects down to an individual dopant level was carried out in 3-D on a scale sufficient to provide quantitative statistical predictions. Efficient algorithms based on a single multigrid solution of the Poisson equation followed by the solution of a simplified current continuity equation are used in the simulations. The effects of various MOSFET design parameters, including the channel length and width, oxide thickness and channel doping, on the threshold voltage lowering and fluctuations are studied using typical samples of 200 atomistically different MOSFETs. The atomistic results for the threshold voltage fluctuations were compared with two analytical models based on dopant number fluctuations. Although the analytical models predict the general trends in the threshold voltage fluctuations, they fail to describe quantitatively the magnitude of the fluctuations. The distribution of the atomistically calculated threshold voltage and its correlation with the number of dopants in the channel of the MOSFETs was analyzed based on a sample of 2500 microscopically different devices. The detailed analysis shows that the threshold voltage fluctuations are determined not only by the fluctuation in the dopant number, but also in the dopant positio

    Efficient 3D `atomistic' simulation technique for studying of random dopant induced threshold voltage lowering and fluctuations in decanano MOSFETs

    Get PDF
    A 3D `atomistic' simulation technique to study random dopant induced threshold voltage lowering and fluctuations in sub 0.1 μm MOSFETs is presented. It allows statistical analysis of random impurity effects down to the individual impurity level. Efficient algorithms based on a single solution of Poisson's equation, followed by the solution of a simplified current continuity equation are used in the simulations

    Random dopant threshold voltage fluctuations in 50 nm epitaxial channel MOSFETs: a 3D 'atomistic' simulation study

    Get PDF
    No abstract available

    Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1-μm MOSFET's with epitaxial and delta-doped channels

    Get PDF
    A detailed three-dimensional (3-D) statistical 'atomistic' simulation study of fluctuation-resistant sub 0.1-μm MOSFET architectures with epitaxial channels and delta doping is presented. The need for enhancing the fluctuation resistance of the sub-0.1-μm generation transistors is highlighted by presenting summarized results from atomistic simulations of a wide range of conventional devices with uniformly doped channels. According to our atomistic results, the doping concentration dependence of the random dopant-induced threshold voltage fluctuations in conventional devices is stronger than the analytically predicted fourth-root dependence. As a result of this, the scaling of such devices will be restricted by the �intrinsic� random dopant-induced fluctuations earlier than anticipated. Our atomistic simulations confirm that the introduction of a thin epitaxial layer in the MOSFET's channel can efficiently suppress the random dopant-induced threshold voltage fluctuations in sub-0.1-μm devices. For the first time, we observe an �anomalous� reduction in the threshold voltage fluctuations with an increase in the doping concentration behind the epitaxial channel, which we attribute to screening effects. Also, for the first time we study the effect of a delta doping, positioned behind the epitaxial layer, on the intrinsic threshold voltage fluctuations. Above a certain thickness of epitaxial layer, we observe a pronounced anomalous decrease in the threshold voltage fluctuation with the increase of the delta doping. This phenomenon, which is also associated with screening, enhances the importance of the delta doping in the design of properly scaled fluctuation-resistant sub-0.1-μm MOSFET's

    Gate tunnelling and impact ionisation in sub 100 nm PHEMTs

    Get PDF
    Impact ionization and thermionic tunnelling as two possible breakdown mechanisms in scaled pseudomorphic high electron mobility transistors (PHEMTs) are investigated by Monte Carlo (MC) device simulations. Impact ionization is included in MC simulation as an additional scattering mechanism whereas thermionic tunnelling is treated in the WKB approximation during each time step in selfconsistent MC simulation. Thermionic tunnelling starts at very low drain voltages but then quickly saturates. Therefore, it should not drastically affect the performance of scaled devices. Impact ionization threshold occurs at greater drain voltages which should assure a reasonable operation voltage scale for all scaled PHEMTs

    Effect of oxide interface roughness on the threshold voltage fluctuations in decanano MOSFETs with ultrathin gate oxides

    Get PDF
    In this paper we use the density gradient (DG) simulation approach to study, in 3D, the effect of local oxide thickness fluctuations on the threshold voltage of decanano MOSFETs on a statistical scale. The random 2D surfaces used to represent the interface are constructed using the standard assumptions for the auto-correlation function of the interface. The importance of the quantum mechanical effects when studying oxide thickness fluctuations are illustrated in several simulation examples

    Tunnelling and impact ionization in scaled double doped PHEMTs

    Get PDF
    No abstract available

    Breakdown of universal mobility curves in sub-100-nm MOSFETs

    Get PDF
    We explore the breakdown of universal mobility behavior in sub-100-nm Si MOSFETs, using a novel three-dimensional (3-D) statistical simulation approach. In this approach, carrier trajectories in the bulk are treated via 3-D Brownian dynamics, while the carrier-interface roughness scattering is treated using a novel empirical model

    Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness

    Get PDF
    In this paper, we use statistical three-dimensional (3-D) simulations to study the impact of the gate line edge roughness (LER) on the intrinsic parameters fluctuations in deep decananometer (sub 50 nm) gate MOSFETs. The line edge roughness is introduced using a Fourier synthesis technique based on the power spectrum of a Gaussian autocorrelation function. In carefully designed simulation experiments, we investigate the impact of the rms amplitude /spl Delta/ and the correlation length /spl Lambda/ on the intrinsic parameter fluctuations in well scaled, but simple devices with fixed geometry as well as the channel length and width dependence of the fluctuations at fixed LER parameters. For the first time, we superimpose in the simulations LER and random discrete dopants and investigate their relative contribution to the intrinsic parameter fluctuations in the investigated devices. For particular MOSFET geometries, we were able to identify the regions where each of these two sources of intrinsic parameter fluctuations dominates
    corecore